Solar Optical Materials Laboratory Facilities

Gary Jorgensen, Carl Bingham, Cheryl Kennedy,

Al Lewandowski, Kent Terwilliger, Tim Wendelin

CSP Peer Review

November 8, 2001

Albuquerque, NM

Outline

- Background
- Optical Materials Laboratories
- Important Accomplishments
- Problematic Issues
- Summary

Background

Objectives

- Provide analytical and measurement support for industry needs
- Provide critical support of Optical Materials R&D efforts

Importance

- Supports all three CSP technologies (program's most crosscutting activity)
- Unique infrastructure for solar optical materials testing
- Allows speedy and efficient response to industry needs and requests

Optical Materials Laboratories

- Optical Measurements
- Durability Testing
- Analytical Characterization
- Sample Preparation

Optical Measurements

- Spectral hemispherical reflectance
- Specular reflectance at specific wavelengths
- Broad spectrum of measurement capabilities

Specular Reflectometer

National Renewable Energy Laboratory, Golden CO

Concentrating Solar Power Optical Characterization Tools

National Renewable Energy Laboratory, Golden CO

Durability Testing

Outdoor

Laboratory Chambers

Ultra-Accelerated, Natural Sunlight

Typical Outdoor Exposure

Test Site

3 Radiometers

Additional meteorological monitoring sensors (wind, temperature, relative humidity, precipitation, etc.)

Data
logger and
modem
(between
racks
unseen)

Racks
with
samples
tilted at
azimuth
angle

Outdoor Exposure Test Network

Site

- 1. Miami, FL
- 2. Daggett, CA
- 3. Phoenix, AZ
- 4. Sacramento, CA
- 5. Fort Davis, TX
- 6. Golden, CO
- 7. Köln, Germany
- 8. Almería, Spain

Stress Conditions

Hot / Humid

Hot / Dry

Hot / Dry

Warm / Humid

Warm / Mild

Cool / Mild

Warm/Humid

Hot/Mild

All sites are instrumented; 2 new sites near Moscow; Australia interested

Solar Simulator Exposure Chamber

- Concurrent testing of 8 samples
- Samples exposed to multiple levels of 3 stress factors
 - UV light
 - Temperature
 - Humidity

Ultra-Accelerated Test Facility

Samples being tested

- 100 X natural sunlight
- Revolutionary; Worldwide unique
- Spectrally split UV
- Major industry partner interested in commercialization

Approach to Durability Testing

Comparison of Real-World Measured vs. Predicted Performance Loss

Use constant, accelerated stress exposure to obtain model coefficients:

$$\Delta P = A I e^{-[E/T]} e^{C \cdot RH} \Delta t$$

Use coefficients and outdoor weather data to predict:

$$\Delta P = \sum A I(t) e^{-[E/T(t)]} e^{C \cdot RH(t)} \Delta t$$

Analytical Characterization

- Help optimize sample preparation
- Failure analysis of exposed samples
- Strong industry support capabilities

SEM

Auger

Sun\(\bar{Z}\) Lab's State-of-the-Art Vacuum Deposition System (Activity Terminated 4/00)

Allows timely fabrication of candidate advanced solar mirror constructions

Important Accomplishments

- World-recognized Center of Excellence established
- Significant IP transferred to industry
- Substantial support to solar industry provided
- Ability to test candidate solar mirror samples at up to 100 suns demonstrated
- SLP methodology developed and correlations between accelerated exposure testing (AET) and outdoor results validated
- State-of-the-art deposition system activated; process parameters explored; initial constructions fabricated; activity terminated despite successes

Key Patents

- Jorgensen, G. J., et al, "Ultra-Accelerated Natural Sunlight Exposure Testing," U.S. Patent # 6,073,500, June 13, 2000.
- Lewandowski, A. A., et al, "Ultra-Accelerated Natural Sunlight Exposure Testing Facilities," NREL IR# 00-12, filed March 9, 2000 (continuation in part of 6,073,500).

Major Publications

- "Specular Reflectance Properties of Silvered Polymer Materials", Susemihl, I. and Schissel, P., *Sol. Energy Mater.* 16 (1987) 403-421.
- "LANSIR: An Instrument for Measuring the Light-Scattering Properties of Laminate Membrane Mirrors", Wendelin, T.J. and Wood, R.L., Proceedings of the Eleventh Annual ASME Solar Energy Conference, San Diego, CA. April 2-5, 1989, pp. 517-523.
- "Durability Studies of Solar Reflector Materials Exposed to Environmental Stresses", Jorgensen, G.J., Kim, H.M., and Wendelin, T.J., *Durability Testing of Nonmetallic Materials, ASTM STP 1294*, Robert J. Herling, Ed., American Society for Testing and Materials, Philadelphia, 1996.
- "International Collaborative Testing of Solar Reflectors", Jorgensen, G., Böhmer, M., Fend, T., and Sánchez, M., *Solar Thermal Concentrating Technologies, Proceedings of the 8th International Symposium, October 6-11, 1996, Köln, Germany*, M. Becker and M. Böhmer, Eds., C. F. Müller Verlag, Heidelberg (1997) 443-462.
- "A Unique Facility for Ultra-Accelerated Natural Sunlight Exposure Testing of Materials", Jorgensen, G., Bingham, C., Netter, J., Goggin, R., and Lewandowski, A., *Service Life Prediction of Organic Coatings, A Systems Approach, ACS Symposium Series* 722, D.R. Bauer and J.W. Martin, Eds., American Chemical Society, (1999) 170-185.
- "Optical Durability Testing of Candidate Solar Mirrors", Jorgensen, G., Kennedy, C., King, D., and Terwilliger, K., NREL/TP-520-28110, Golden, CO, March 2000.

Problematic Issues

- Mortgage mentality must be dispelled
- Some equipment needs to be modernized/augmented
 - Video reflectometer for specular reflectance measurements
 - Vacuum furnace for testing of candidate absorbers
 - Instrumentation to measure optical properties of candidate absorbers as function of temperature
- Reactivation of deposition facilities for hardcoat development

Summary

- Industry cannot afford capital investment associated with this specialized equipment
- Provides additional analytical support to special industry requests on a timely and efficient basis
- Labs serve as central repository for test results and dissemination
- All types of materials tested using same protocols to allow direct comparisons between various candidates
- Ability to track improvements and identify promising new materials
- Standardized tests developed with industry, other national labs, international colleagues, and standards committee

